Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 209

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Orbit-based analysis of resonant excitations of Alfv$'e$n waves in tokamaks

Bierwage, A.; Shinohara, Koji

Physics of Plasmas, 21(11), p.112116_1 - 112116_21, 2014/11

 Times Cited Count:23 Percentile:73.33(Physics, Fluids & Plasmas)

Journal Articles

Analysis of an aspect ratio effect on the stability of external MHD modes in tokamaks with the Newcomb equation

Aiba, Nobuyuki; Tokuda, Shinji; Ishizawa, Tomoko*

Journal of Plasma Physics, 72(6), p.1127 - 1131, 2006/12

 Times Cited Count:1 Percentile:3.54(Physics, Fluids & Plasmas)

We develop the method for the stability analysis of a ideal external magnetohydrodynamic (MHD) mode by solving the eigenvalue problem associated with the two-dimensional Newcomb equation, the inertia free linear ideal MHD equation. This eigenvalue problem can be expected to provide a powerful tool for not only a low-n external MHD mode but also a high-n mode, where n is a toroidal mode number. With this method, we analyze an effect of the aspect ratio on the stability of middle-n (1$$<$$n$$<$$10) external MHD modes in tokamaks; this gets attention for the design research of a high performance tokamak. As the result of this work, we study that external MHD modes become stable as the aspect ratio decreases, and also find that the stability of middle-n external modes becomes important because an effect of a conducting wall is enhanced by reducing the aspect ratio.

Journal Articles

Overview of national centralized tokamak program; Mission, design and strategy to contribute ITER and DEMO

Ninomiya, Hiromasa; Akiba, Masato; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hayashi, Nobuhiko; Hosogane, Nobuyuki; Ikeda, Yoshitaka; Inoue, Nobuyuki; et al.

Journal of the Korean Physical Society, 49, p.S428 - S432, 2006/12

To contribute DEMO and ITER, the design to modify the present JT-60U into superconducting coil machine, named National Centralized Tokamak (NCT), is being progressed under nationwide collaborations in Japan. Mission, design and strategy of this NCT program is summarized.

Journal Articles

Characterization of Type-I ELMs in tangential co-, balanced- and counter-plus perpendicular NBI heated plasmas on JT-60U

Kamiya, Kensaku; Urano, Hajime; Koide, Yoshihiko; Takizuka, Tomonori; Oyama, Naoyuki; Kamada, Yutaka; JT-60 Team

Plasma Physics and Controlled Fusion, 48(5A), p.A131 - A139, 2006/05

 Times Cited Count:22 Percentile:58.7(Physics, Fluids & Plasmas)

Effects of plasma rotation and ripple loss on the Type-I ELMs have systematically studied in the JT-60U tokamak, scanning combinations of NBI at the three kinds of plasma volumes. New findings on the Type-I ELMs confirm to be smaller ELM energy loss per pedestal stored energy, DWELM/Wped, and faster ELM frequency, fELM, in the counter-NBI than co-NBI, keeping the power of ELM, PELM, per heating power crossing the separatrix, PSEP, constant. Balanced-NBI case is also intermediate between co- and counter-NBI. In addition, the product of PELM/PSEP decreases according to increase in the plasma volume, suggesting an increase in the inter-ELM transport due mainly to an enhancement in the ripple loss of fast ion.

Journal Articles

Fracture mechanics analysis including the butt joint geometry for the superconducting conductor conduit of the national centralized tokamak

Takahashi, Hiroyuki*; Kudo, Yusuke; Tsuchiya, Katsuhiko; Kizu, Kaname; Ando, Toshinari*; Matsukawa, Makoto; Tamai, Hiroshi; Miura, Yukitoshi

Fusion Engineering and Design, 81(8-14), p.1005 - 1011, 2006/02

 Times Cited Count:2 Percentile:17.14(Nuclear Science & Technology)

This paper presents dependence of the stress intensity factor, around the defect in the butt joint welding of a superconducting conductor conduit, on a geometrical factor estimated by fracture mechanics analysis. The stress intensity factor can be estimated by the Newman-Raju equation about CICC section, but the effect of the difference between the geometry assumed in the equation and CICC has not been clarified yet. Therefore, the three-dimensional finite element method (3D-FEM) is performed to estimate the geometrical factor. As a result, the Newman-Raju equation is considered to be available for the assessment of the fracture toughness of the conduit of rectangular shape because the maximum stress intensity factor by 3-D FEM is only 3% larger than that by the Newman-Raju equation in the maximum postulated defect.

Journal Articles

Critical $$beta$$ analyses with ferromagnetic and plasma rotation effects and wall geometry for a high $$beta$$ steady state tokamak

Kurita, Genichi; Bialek, J.*; Tsuda, Takashi; Azumi, Masafumi*; Ishida, Shinichi; Navratil, G. A.*; Sakurai, Shinji; Tamai, Hiroshi; Matsukawa, Makoto; Ozeki, Takahisa; et al.

Nuclear Fusion, 46(2), p.383 - 390, 2006/02

 Times Cited Count:9 Percentile:31.17(Physics, Fluids & Plasmas)

It is shown that critical beta is decreased by ferromagnetic effect by about 8% for $$mu$$/$$mu$$$$_{0}$$$$sim$$2, $$mu$$ and $$mu$$$$_{0}$$ denoting the permeability of ferromagnetic wall and vacuum, respectively, for tokamak of aspect ratio 3. The existence of the stability window for resistive wall mode opened by both effects of the toroidal plasma rotation and the plasma dissipation, which was not observed for high aspect ratio tokamak, is found for tokamak of aspect ratio 3. The effect of ferromagnetism on them is also investigated. The critical beta analyses of NCT (National Centralized Tokamak) plasma using VALEN code are started with stabilizing plate and vacuum vessel geometry with finite resistivity, and the results for passive effect of stabilizing plate are obtained. The calculations including stabilizing effect of the vacuum-vessel and also active feedback control are also performed for present design of NCT plasma.

Journal Articles

An Approach for development of technical structural standard in ITER

Nakahira, Masataka; Takeda, Nobukazu

Hozengaku, 4(4), p.47 - 52, 2006/01

The technical structural standard for ITER (International Thermonuclear Experimental Fusion Reactor) should be innovative because of their quite different features of safety and mechanical components from nuclear fission reactors, and the necessity of introducing several new fabrication and examination technologies. Recognizing the international importance of Fusion Standard, Japan and ASME has started the cooperation development of the Fusion Standard. This paper shows the special features of ITER from view points of safety, design and fabrication, and proposes approach for development of the fusion standard.

Journal Articles

Long pulse operation of high performance plasmas in JT-60U

Ide, Shunsuke; JT-60 Team

Plasma Science and Technology, 8(1), p.1 - 4, 2006/01

 Times Cited Count:0 Percentile:0.01(Physics, Fluids & Plasmas)

Recent progress in development of high performance plasma and efforts to prolong their sustainment towards ITER advanced operations and a steady-state reactor in JT-60U are presented focusing following achievements; $$beta$$N=3 sustained for 6.2s ($$sim$$4.1tR) without NTMs in normal shear, fBS$$sim$$0.45 sustained for 5.8s ($$sim$$2.8tR) under nearly full CD in weak a shear plasma, fBS$$sim$$0.75 sustained for 7.4s (2.7tR) under nearly full CD in a reversed shear plasma. Furthermore, importance of these results and issues in advanced tokamak development will be discussed.

Journal Articles

Global profile effects and structure formations in toroidal electron temperature gradient driven turbulence

Idomura, Yasuhiro; Tokuda, Shinji; Kishimoto, Yasuaki

Nuclear Fusion, 45(12), p.1571 - 1581, 2005/12

 Times Cited Count:39 Percentile:74.86(Physics, Fluids & Plasmas)

Using a global gyrokinetic toroidal particle code, the toroidal electron temperature gradient driven (ETG) turbulence is studied in positive and reversed shear tokamaks. In the nolinear turbulent state, the ETG turbulence in the positive and reversed shear configurations show quite different structure formations. In the positive shear configuration, the ETG turbulence is dominated by streamers which have a ballooning type structure, and the electron temperature $$T_e$$ profile is quickly relaxed to the marginally stable state in a turbulent time scale. In the reversed shear configuration, quasi-steady zonal flows are produced in the regative shear region, while the positive shear region is characterized by streamers. Accordingly, the electron thermal diffusivity $$chi_e$$ has a gap structure across the $$q_{min}$$ surface, and the $$T_e$$ gradinet is sustained above the marginal value for a long time in the quasi-steady phase. The results suggest a stiffness of the $$T_e$$ profile in positive shear tokamaks, and a possibility of the Te transport barrier in reversed shear tokamaks.

Journal Articles

Design study of national centralized tokamak facility for the demonstration of steady state high-$$beta$$ plasma operation

Tamai, Hiroshi; Akiba, Masato; Azechi, Hiroshi*; Fujita, Takaaki; Hamamatsu, Kiyotaka; Hashizume, Hidetoshi*; Hayashi, Nobuhiko; Horiike, Hiroshi*; Hosogane, Nobuyuki; Ichimura, Makoto*; et al.

Nuclear Fusion, 45(12), p.1676 - 1683, 2005/12

 Times Cited Count:15 Percentile:45.44(Physics, Fluids & Plasmas)

Design studies are shown on the National Centralized Tokamak facility. The machine design is carried out to investigate the capability for the flexibility in aspect ratio and shape controllability for the demonstration of the high-beta steady state operation with nation-wide collaboration, in parallel with ITER towards DEMO. Two designs are proposed and assessed with respect to the physics requirements such as confinement, stability, current drive, divertor, and energetic particle confinement. The operation range in the aspect ratio and the plasma shape is widely enhanced in consistent with the sufficient divertor pumping. Evaluations of the plasma performance towards the determination of machine design are presented.

Journal Articles

Nonlinear behaviour of collisionless double tearing mode induced by electron inertia

Matsumoto, Taro; Naito, Hiroshi*; Tokuda, Shinji; Kishimoto, Yasuaki*

Nuclear Fusion, 45(11), p.1264 - 1270, 2005/11

 Times Cited Count:14 Percentile:43.56(Physics, Fluids & Plasmas)

A gyrokinetic particle simulation is executed to clarify the effect of the electron inertia on the MHD phenomena in the reversed shear configuration (RSC) of a cylindrical tokamak plasma. It is found that the collisionless (kinetic) double tearing modes grow up at the Alfv$'e$n time scale, and nonlinearly induce the internal collapse when the helical flux at the magnetic axis is less than that at the outer resonant surface. After the internal collapse, the secondary reconnection is induced by the current concentration due to the $$m=2$$ convective flow. It is also clarified that a nonlinear dynamics accompanied with the elementary processes caused by the $$m=2$$ flow can generate a new RSC with resonant surfaces. In the presence of the density gradient, after the full reconnection induced by the $$m=2$$ mode, the radial electric field is found to be generated due to the difference of the $${bf E} times {bf B}$$ motion between ions and electrons. However, the intensity of the radial field is not so large as that induced by the collisionless kink mode.

Journal Articles

Overview of JT-60U progress towards steady-state advanced tokamak

Ide, Shunsuke; JT-60 Team

Nuclear Fusion, 45(10), p.S48 - S62, 2005/10

 Times Cited Count:53 Percentile:83.22(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

N-NBI heating and current drive in JT-60U towards steady-state tokamak

Ikeda, Yoshitaka; Oikawa, Toshihiro; Ide, Shunsuke

Purazuma, Kaku Yugo Gakkai-Shi, 81(10), p.773 - 778, 2005/10

In steady-state tokamak fusion reactors, an efficient external current drive and a large fraction of the bootstrap current are required for non-inductive operation at low circulating power. NBI is a powerful and reliable actuator for current drive and heating. A negative ion-based NBI (N-NBI) with a high beam energy more than 350 keV has been installed in the JT-60U tokamak in order to study the NBI current drive and heating in an ITER relevant regime. This paper presents recent progress of N-NBI experiments and its system in JT-60U towards steady-state operation for ITER and tokamak fusion reactors.

Journal Articles

Observation of the bootstrap current reduction at magnetic island in a neoclassical tearing mode plasma

Oikawa, Toshihiro; Suzuki, Takahiro; Isayama, Akihiko; Hayashi, Nobuhiko; Fujita, Takaaki; Naito, Osamu; Tsuda, Takashi; Kurita, Genichi; JT-60 Team

Nuclear Fusion, 45(9), p.1101 - 1108, 2005/09

 Times Cited Count:4 Percentile:14.23(Physics, Fluids & Plasmas)

Evolution of the current density profile associated with magnetic island formation in a neoclassical tearing mode plasma was measured for the first time in JT-60U by. As the island grew, the current density profile turned flat at the radial region of the island, followed by an appearance of a hollow structure. As the island shrank, the deformed region became narrower, and it finally diminished after the disappearance of the island. In an MHD-quiescent plasma, on the other hand, no deformation was observed. The observed deformation in the current density profile associated with the tearing mode is reproduced in a time dependent transport simulation assuming reduction of the bootstrap current in the radial region of the island. Comparison of the measurement with a calculated steady-state solution also explains the temporal behaviors of the current density and safety factor profiles with reduction and recovery of the bootstrap current. From the experimental observation and simulations, we reach conclusion that the bootstrap current decreases within the island O-point.

Journal Articles

Concept and results of new operation scheme with improved control system for radio frequency heating in JT-60U

Moriyama, Shinichi; Shinozaki, Shinichi

Japanese Journal of Applied Physics, Part 1, 44(8), p.6224 - 6229, 2005/08

 Times Cited Count:1 Percentile:4.7(Physics, Applied)

The control system of RF heating system in JT-60U has been improved with a concept of dispersion processing and featuring a real time waveform shaping method. It is proper that the brand-new, dispersion processing system has higher performance and reliability than old single processor system before modification, however it is worthy of mention that improvement on operation roll sharing, using the real time waveform shaping, has enabled more efficient and smooth operation. The typical roll sharing is that a simple rectangular waveform of the RF heating power is set by the experiment operator, and the waveform is re-shaped with the parameter set by the RF operator who knows deeply the condition of the RF system at that time. The simple and flexible composition of the new control system will also enable further improvement of hardware to enhance plasma performance that is inevitable to the devices for fusion experiment.

Journal Articles

Profile formation and sustainment of autonomous tokamak plasma with current hole configuration

Hayashi, Nobuhiko; Takizuka, Tomonori; Ozeki, Takahisa

Nuclear Fusion, 45(8), p.933 - 941, 2005/08

 Times Cited Count:13 Percentile:41.32(Physics, Fluids & Plasmas)

We have investigated profile formation and sustainment of current hole (CH) plasma by 1.5D transport simulations with current limit model inside CH based on Axisymmetric Tri-Magnetic-Islands equilibrium. Sharp reduction of anomalous transport in RS region can reproduce JT-60U experiments. The transport becomes neoclassical-level in RS region, which results in autonomous profile formation of ITB and CH through large bootstrap current. ITB width determined by neoclassical-level transport agrees with that in JT-60U. Energy confinement inside ITB agrees with JT-60U scaling. The scaling means that core plasma inside ITB is governed by MHD equilibrium limit, i.e., autonomous limitation of energy confinement. The plasma with large CH is sustained with full current drive by bootstrap current. The plasma with small CH and small bootstrap current fraction shrinks due to penetration of inductive current. This shrink is prevented and CH size can be controlled by appropriate external CD. CH plasma is found to respond autonomically to external CD. Application of CH plasma to reactor is discussed.

Journal Articles

Advanced tokamak research on JT-60

Kishimoto, Hiroshi; Ishida, Shinichi; Kikuchi, Mitsuru; Ninomiya, Hiromasa

Nuclear Fusion, 45(8), p.986 - 1023, 2005/08

 Times Cited Count:40 Percentile:28.81(Physics, Fluids & Plasmas)

The Japanese large tokamak JT-60 has been focusing its research emphases to develop a high performance plasma, namely high confinement, high temperature and high density, and to sustain it non-inductively for a long time with possible minimization of external power input. The first demonstration of high bootstrap current discharges in a high-poloidal-beta mode (high-$$beta$$p) and the concept development of a steady-state tokamak reactor SSTR based on this experimental achievement initiated the so-called "advanced tokamak research". The first observation of internal transport barriers in the JT-60 high-$$beta$$p mode was followed by the world-wide explorations of reversed shear discharges associated with internal transport barriers. The advanced tokamak research is now the major trend of the current tokamak development. A new concept of compact ITER was developed and proposed in the context of this advanced tokamak approach pursued on JT-60.

Journal Articles

Electron cyclotron heating assisted startup in JT-60U

Kajiwara, Ken*; Ikeda, Yoshitaka; Seki, Masami; Moriyama, Shinichi; Oikawa, Toshihiro; Fujii, Tsuneyuki; JT-60 Team

Nuclear Fusion, 45(7), p.694 - 705, 2005/07

 Times Cited Count:60 Percentile:85.7(Physics, Fluids & Plasmas)

Electron cyclotron heating (ECH) assisted start-up experiment was performed in JT-60U. The breakdown loop voltage, becoming the maximum value at the plasma start-up, successfully reduced from 30 V to 4 V (E = 0.26 V/m) by 200 kW ECH. This fulfills the value less than 0.3 V/m, which corresponds to the maximum electric field required in ITER. Moreover, in order to investigate properties of start-up plasmas, parameter scans of the ECH power, prefilled gas pressure, resonant position, polarization angle and injection position were carried out and the dependence on them were obtained. It was revealed that the properties have dependences on the injection position and polarization angle in large tokamaks although they seemed to have no dependence on them from the experiments in small and medium tokamaks. In addition, in experiments of the plasma start-up using second and third harmonic ECH, it was found that the plasma current was ramped by 800 kW second harmonic ECH and was not ramped by 1.6 MW third harmonic ECH even with 7 MW neutral beam injection heating.

Journal Articles

Role of bremsstrahlung radiation in limiting the energy of runaway electrons in Tokamaks

Bakhtiari, M.; Kramer, G. J.*; Takechi, Manabu; Tamai, Hiroshi; Miura, Yukitoshi; Kusama, Yoshinori; Kamada, Yutaka

Physical Review Letters, 94(21), p.215003_1 - 215003_4, 2005/06

 Times Cited Count:45 Percentile:82.74(Physics, Multidisciplinary)

Bremsstrahlung radiation of runaway electrons is found to be an energy limit for runaway electrons in tokamaks. The minimum and maximum energy of runaway electron beams is shown to be limited by collisions and Bremsstrahlung radiation, respectively. It is also found that a massive injection of a high-Z gas such as Xenon can terminate a disruption-generated runaway current before the runaway electrons hit the walls.

Journal Articles

Evolution of the current density profile associated with magnetic island formation in JT-60U

Oikawa, Toshihiro; Isayama, Akihiko; Fujita, Takaaki; Suzuki, Takahiro; Tsuda, Takashi; Kurita, Genichi

Physical Review Letters, 94(12), p.125003_1 - 125003_4, 2005/04

 Times Cited Count:10 Percentile:53.4(Physics, Multidisciplinary)

Evolution of the current density profile associated with the magnetic island formation during a tearing mode was measured for the first time in the JT-60U tokamak. With the island growth, the current density profile turned flat at the radial region of the island, followed by appearance of a hollow structure. As the island shrank, the flat region became narrower, and it finally diminished after disappearance of the island. It was also observed that the local poloidal magnetic field fluctuated in correlation with the island rotation. This indicates that the observed deformation in the current density profile is localized in the O-point of the island. The result is the first experimental demonstration of theoretical predictions on the current density evolution in tearing modes.

209 (Records 1-20 displayed on this page)